---
title: "Lec 13 - Web Scraping"
subtitle: "
Statistical Programming"
author: "Sta 323 | Spring 2022"
date: "
Dr. Colin Rundel"
output:
xaringan::moon_reader:
css: ["slides.css"]
lib_dir: libs
nature:
highlightStyle: solarized-light
highlightLines: true
countIncrementalSlides: false
ratio: "16:9"
---
exclude: true
```{r, message=FALSE, warning=FALSE, include=FALSE}
options(
htmltools.dir.version = FALSE, # for blogdown
width = 80,
tibble.width = 80
)
knitr::opts_chunk$set(
fig.align = "center"
)
htmltools::tagList(rmarkdown::html_dependency_font_awesome())
```
```{r setup, message=FALSE}
library(magrittr)
library(rvest)
```
---
class: middle, center
```{r echo=FALSE, out.width="45%"}
knitr::include_graphics("imgs/hex-rvest.png")
```
---
## Hypertext Markup Language
Most of the data on the web is still largely available as HTML - while it is structured (hierarchical) it often is not available in a form useful for analysis (flat / tidy).
```html
This is a title
Hello world!
John
Doe
```
---
## rvest
`rvest` is a package from the tidyverse that makes basic processing and manipulation of HTML data straight forward. It provides high level functions for interacting with html via the xml2 library.
Core functions:
* `read_html()` - read HTML data from a url or character string.
* `html_elements()` / ~~`html_nodes()`~~ - select specified elements from the HTML document using CSS selectors (or xpath).
* `html_element()` / ~~`html_node()`~~ - select a single element from the HTML document using CSS selectors (or xpath).
* `html_table()` - parse an HTML table into a data frame.
* `html_text()` / `html_text2()` - extract tag's text content.
* `html_name` - extract a tag/element's name(s).
* `html_attrs` - extract all attributes.
* `html_attr` - extract attribute value(s) by name.
---
## html, rvest, & xml2
```{r}
html =
'
This is a title
Hello world!
John
Doe
'
read_html(html)
```
---
## css selectors
We will be using a tool called selector gadget to help up identify the html elements of interest - it does this by constructing a css selector which can be used to subset the html document.
Some examples of basic selector syntax is below,
.small[
Selector | Example | Description
:-----------------|:-----------------|:--------------------------------------------------
.class | `.title` | Select all elements with class="title"
#id | `#name` | Select all elements with id="name"
element | `p` | Select all <p> elements
element element | `div p` | Select all <p> elements inside a <div> element
element>element | `div > p` | Select all <p> elements with <div> as a parent
[attribute] | `[class]` | Select all elements with a class attribute
[attribute=value] | `[class=title]` | Select all elements with class="title"
]
.footnote[There are also a number of additional combinators and pseudo-classes that improve flexibility, see examples [here](https://www.w3schools.com/cssref/css_selectors.asp)]
---
## Selecting tags
```{r}
read_html(html) %>% html_elements("p")
```
--
```{r}
read_html(html) %>% html_elements("p") %>% html_text()
```
--
```{r}
read_html(html) %>% html_elements("p") %>% html_name()
```
--
```{r}
read_html(html) %>% html_elements("p") %>% html_attrs()
```
--
```{r}
read_html(html) %>% html_elements("p") %>% html_attr("align")
```
---
## More selecting tags
```{r}
read_html(html) %>% html_elements("div")
```
--
```{r}
read_html(html) %>% html_elements("div") %>% html_text()
```
---
## Nesting tags
```{r}
read_html(html) %>% html_elements("body div")
```
--
```{r}
read_html(html) %>% html_elements("body>div")
```
--
```{r}
read_html(html) %>% html_elements("body div div")
```
---
## CSS classes and ids
```{r}
read_html(html) %>% html_elements(".name")
```
--
```{r}
read_html(html) %>% html_elements("div.name")
```
--
```{r}
read_html(html) %>% html_elements("#first")
```
---
## Mixing it up
```{r}
read_html(html) %>% html_elements("[align]")
```
```{r}
read_html(html) %>% html_elements(".contact div")
```
---
## `html_text()` vs `html_text2()`
```{r}
html = read_html(
"
This is the first sentence in the paragraph.
This is the second sentence that should be on the same line as the first sentence.
This third sentence should start on a new line.
"
)
```
--
```{r}
html %>% html_text() %>% cat(sep="\n")
```
```{r}
html %>% html_text2() %>% cat(sep="\n")
```
---
## html tables
```{r}
html_table =
'
This is a title
'
```
--
```{r}
read_html(html_table) %>% html_elements("table") %>% html_table()
```
---
## SelectorGadget
This is a javascript based tool that helps you interactively build an appropriate CSS selector for the content you are interested in.
.center[
```{r echo=FALSE, out.width="45%"}
knitr::include_graphics('imgs/selectorgadget.png')
```
[selectorgadget.com](http://selectorgadget.com)
]
---
class: middle
# Web scraping considerations
---
## "Can you?" vs "Should you?"
```{r echo=FALSE, out.width="60%"}
knitr::include_graphics("imgs/ok-cupid-1.png")
```
.footnote[.small[
Source: Brian Resnick, [Researchers just released profile data on 70,000 OkCupid users without permission](https://www.vox.com/2016/5/12/11666116/70000-okcupid-users-data-release), Vox.
]]
---
## "Can you?" vs "Should you?"
```{r echo=FALSE, out.width="70%"}
knitr::include_graphics("imgs/ok-cupid-2.png")
```
---
## Scraping permission & `robots.txt`
There is a standard for communicating to users if it is acceptable to automatically scrape a website via the [robots exclusion standard](https://en.wikipedia.org/wiki/Robots_exclusion_standard) or `robots.txt`.
You can find examples at all of your favorite websites: [google](https://www.google.com/robots.txt), [facebook](https://facebook.com/robots.txt), etc.
--
These files are meant to be machine readable, but the `polite` package can handle this for us (and much more).
```{r}
polite::bow("http://google.com")
polite::bow("http://facebook.com")
```
---
## Example - Rotten Tomatoes
For the movies listed in **Popular Steaming Movies** list on `rottentomatoes.com` create a data frame with the Movies' titles, their tomatometer score, and whether the movie is fresh or rotten, and the movie's url.
---
## Exercise 1
Using the url for each movie, now go out and grab the number of reviews, the runtime, and number of user ratings.
If you finish that you can then try to scrape the mpaa rating and the audience score,.