class: center, middle, inverse, title-slide # Lec 02 - Logic and types in R ##
Statistical Programming ### Sta 323 | Spring 2022 ###
Dr. Colin Rundel --- exclude: true --- class: middle # In R (almost) <br/> everything is a vector --- ## Vectors The fundamental building block of data in R are vectors (collections of related values, objects, data structures, etc). <br/> R has two types of vectors: * **atomic** vectors (*vectors*) - homogeneous collections of the *same* type (e.g. all `true`/`false` values, all numbers, or all character strings). * **generic** vectors (*lists*) - heterogeneous collections of *any* type of R object, even other lists <br/> (meaning they can have a hierarchical/tree-like structure). --- class: middle # Atomic Vectors --- ## Atomic Vectors R has six atomic vector types, we can check the type of any object in R using the `typeof()` function `typeof()` | `mode()` :-----------|:------------ logical | logical double | numeric integer | numeric character | character complex | complex raw | raw Mode is a higher level abstraction, we will discuss this in detail a bit later. .footnote[ There are additional types in R, e.g. generic vectors have type `list`, but more on these later. See `?typeof` for more information. ] --- ## `logical` - boolean values (`TRUE` and `FALSE`) .pull-left[ ```r typeof(TRUE) ``` ``` ## [1] "logical" ``` ```r typeof(FALSE) ``` ``` ## [1] "logical" ``` ] .pull-right[ ```r mode(TRUE) ``` ``` ## [1] "logical" ``` ```r mode(FALSE) ``` ``` ## [1] "logical" ``` ] -- <br/> R will let you use `T` and `F` as shortcuts to `TRUE` and `FALSE`, this is a bad practice as these values are actually global variables that can be overwritten. ```r T ``` ``` ## [1] TRUE ``` ```r T = FALSE ``` ```r T ``` ``` ## [1] FALSE ``` --- ## `character` - text strings Either single or double quotes are fine, opening and closing quote must match. .pull-left[ ```r typeof("hello") ``` ``` ## [1] "character" ``` ```r typeof('world') ``` ``` ## [1] "character" ``` ] .pull-right[ ```r mode("hello") ``` ``` ## [1] "character" ``` ```r mode('world') ``` ``` ## [1] "character" ``` ] -- <br/> Quote characters can be included by escaping or using a non-matching quote. ```r "abc'123" ``` ``` ## [1] "abc'123" ``` ```r 'abc"123' ``` ``` ## [1] "abc\"123" ``` ```r "abc\"123" ``` ``` ## [1] "abc\"123" ``` .footnote[RStudio's syntax highlighting is helpful here to indicate where it thinks a string begins and ends.] --- ## Numeric types `double` - floating point values (these are the default numerical type) .pull-left[ ```r typeof(1.33) ``` ``` ## [1] "double" ``` ```r typeof(7) ``` ``` ## [1] "double" ``` ] .pull-right[ ```r mode(1.33) ``` ``` ## [1] "numeric" ``` ```r mode(7) ``` ``` ## [1] "numeric" ``` ] -- <br/> `integer` - integer values (literals are indicated with an `L` suffix) <div> .pull-left[ ```r typeof( 7L ) ``` ``` ## [1] "integer" ``` ```r typeof( 1:3 ) ``` ``` ## [1] "integer" ``` ] .pull-right[ ```r mode( 7L ) ``` ``` ## [1] "numeric" ``` ```r mode( 1:3 ) ``` ``` ## [1] "numeric" ``` ] </div> --- ## Concatenation Atomic vectors can be grown (combined) using the concatenate `c()` function. ```r c(1, 2, 3) ``` ``` ## [1] 1 2 3 ``` -- ```r c("Hello", "World!") ``` ``` ## [1] "Hello" "World!" ``` -- ```r c(1, 1:10) ``` ``` ## [1] 1 1 2 3 4 5 6 7 8 9 10 ``` -- ```r c(1,c(2, c(3))) ``` ``` ## [1] 1 2 3 ``` .footnote[**Note** - atomic vectors are inherently flat.] --- class: split-thirds ## Inspecting types * `typeof(x)` - returns a character vector (length 1) of the *type* of object `x`. * `mode(x)` - returns a character vector (length 1) of the *mode* of object `x`. .pull-left[ ```r typeof(1) ``` ``` ## [1] "double" ``` ```r typeof(1L) ``` ``` ## [1] "integer" ``` ```r typeof("A") ``` ``` ## [1] "character" ``` ```r typeof(TRUE) ``` ``` ## [1] "logical" ``` ] .pull-right[ ```r mode(1) ``` ``` ## [1] "numeric" ``` ```r mode(1L) ``` ``` ## [1] "numeric" ``` ```r mode("A") ``` ``` ## [1] "character" ``` ```r mode(TRUE) ``` ``` ## [1] "logical" ``` ] --- ## Type Predicates * `is.logical(x)` - returns `TRUE` if `x` has *type* `logical`. * `is.character(x)` - returns `TRUE` if `x` has *type* `character`. * `is.double(x)` - returns `TRUE` if `x` has *type* `double`. * `is.integer(x)` - returns `TRUE` if `x` has *type* `integer`. * `is.numeric(x)` - returns `TRUE` if `x` has *mode* `numeric`. .col3_left[ ```r is.integer(1) ``` ``` ## [1] FALSE ``` ```r is.integer(1L) ``` ``` ## [1] TRUE ``` ```r is.integer(3:7) ``` ``` ## [1] TRUE ``` ] .col3_mid[ ```r is.double(1) ``` ``` ## [1] TRUE ``` ```r is.double(1L) ``` ``` ## [1] FALSE ``` ```r is.double(3:8) ``` ``` ## [1] FALSE ``` ] .col3_right[ ```r is.numeric(1) ``` ``` ## [1] TRUE ``` ```r is.numeric(1L) ``` ``` ## [1] TRUE ``` ```r is.numeric(3:7) ``` ``` ## [1] TRUE ``` ] --- ## Other useful predicates * `is.atomic(x)` - returns `TRUE` if `x` is an *atomic vector*. * `is.list(x)` - returns `TRUE` if `x` is a *list*. * `is.vector(x)` - returns `TRUE` if `x` is either an *atomic vector* or *list*. .pull-left[ ```r is.atomic(c(1,2,3)) ``` ``` ## [1] TRUE ``` ```r is.list(c(1,2,3)) ``` ``` ## [1] FALSE ``` ```r is.vector(c(1,2,3)) ``` ``` ## [1] TRUE ``` ] .pull-right[ ```r is.atomic(list(1,2,3)) ``` ``` ## [1] FALSE ``` ```r is.list(list(1,2,3)) ``` ``` ## [1] TRUE ``` ```r is.vector(list(1,2,3)) ``` ``` ## [1] TRUE ``` ] --- ## Type Coercion R is a dynamically typed language -- it will automatically convert between most types without raising warnings or errors. Keep in mind the rule that atomic vectors must always contain values of the same type. ```r c(1, "Hello") ``` ``` ## [1] "1" "Hello" ``` -- .top-pad[] ```r c(FALSE, 3L) ``` ``` ## [1] 0 3 ``` -- .top-pad[] ```r c(1.2, 3L) ``` ``` ## [1] 1.2 3.0 ``` --- ## Operator coercion Operators and functions will generally attempt to coerce values to an appropriate type for the given operation <div> .pull-left[ ```r 3.1+1L ``` ``` ## [1] 4.1 ``` ```r 5 + FALSE ``` ``` ## [1] 5 ``` ] .pull-right[ ```r log(1) ``` ``` ## [1] 0 ``` ```r log(TRUE) ``` ``` ## [1] 0 ``` ] </div> -- <br/><br/> .pull-left[ ```r TRUE & FALSE ``` ``` ## [1] FALSE ``` ```r TRUE & 7 ``` ``` ## [1] TRUE ``` ] .pull-right[ ```r TRUE | FALSE ``` ``` ## [1] TRUE ``` ```r FALSE | !5 ``` ``` ## [1] FALSE ``` ] --- ## Explicit Coercion Most of the `is` functions we just saw have an `as` variant which can be used for *explicit* coercion. .pull-left[ ```r as.logical(5.2) ``` ``` ## [1] TRUE ``` ```r as.character(TRUE) ``` ``` ## [1] "TRUE" ``` ```r as.integer(pi) ``` ``` ## [1] 3 ``` ] .pull-right[ ```r as.numeric(FALSE) ``` ``` ## [1] 0 ``` ```r as.double("7.2") ``` ``` ## [1] 7.2 ``` ```r as.double("one") ``` ``` ## Warning: NAs introduced by coercion ``` ``` ## [1] NA ``` ] --- ## Exercise 1 **Part 1** What is the type of the following vectors? Explain why they have that type. * `c(1, NA+1L, "C")` * `c(1L / 0, NA)` * `c(1:3, 5)` * `c(3L, NaN+1L)` * `c(NA, TRUE)` **Part 2** Considering only the four (common) data types, what is R's implicit type conversion hierarchy (from highest priority to lowest priority)? .footnote[*Hint* - think about the pairwise interactions between types.] --- class: middle # Conditionals & Control Flow --- ## Logical (boolean) operators <br/><br/> | Operator | Operation | Vectorized? |:-----------------------------:|:-------------:|:------------: | <code>x | y</code> | or | Yes | `x & y` | and | Yes | `!x` | not | Yes | <code>x || y</code> | or | No | `x && y` | and | No |`xor(x, y)` | exclusive or | Yes --- ## Vectorized? ```r x = c(TRUE,FALSE,TRUE) y = c(FALSE,TRUE,TRUE) ``` -- .pull-left[ ```r x | y ``` ``` ## [1] TRUE TRUE TRUE ``` ```r x & y ``` ``` ## [1] FALSE FALSE TRUE ``` ] -- .pull-right[ ```r x || y ``` ``` ## [1] TRUE ``` ```r x && y ``` ``` ## [1] FALSE ``` ] .footnote[ **Note** both `||` and `&&` only use the *first* value in the vector, all other values are ignored, there is no warning about the ignored values. ] --- ## Vectorization and math Almost all of the basic mathematical operations (and many other functions) in R are vectorized. .pull-left[ ```r c(1, 2, 3) + c(3, 2, 1) ``` ``` ## [1] 4 4 4 ``` ```r c(1, 2, 3) / c(3, 2, 1) ``` ``` ## [1] 0.3333333 1.0000000 3.0000000 ``` ] -- .pull-right[ ```r log(c(1, 3, 0)) ``` ``` ## [1] 0.000000 1.098612 -Inf ``` ```r sin(c(1, 2, 3)) ``` ``` ## [1] 0.8414710 0.9092974 0.1411200 ``` ] --- ## Length coercion (aka recycling) ```r x = c(TRUE, FALSE, TRUE) y = c(TRUE) z = c(FALSE, TRUE) ``` -- .pull-left[ ```r x | y ``` ``` ## [1] TRUE TRUE TRUE ``` ```r x & y ``` ``` ## [1] TRUE FALSE TRUE ``` ] .pull-right[ ```r y | z ``` ``` ## [1] TRUE TRUE ``` ```r y & z ``` ``` ## [1] FALSE TRUE ``` ] <div/> -- <br/> ```r x | z ``` ``` ## Warning in x | z: longer object length is not a multiple of shorter object ## length ``` ``` ## [1] TRUE TRUE TRUE ``` --- ## Length coercion and math The same length coercion rules apply for most basic mathematical operators as well ```r x = c(1, 2, 3) y = c(5, 4) z = 10L ``` .pull-left[ ```r x + x ``` ``` ## [1] 2 4 6 ``` ```r x + z ``` ``` ## [1] 11 12 13 ``` ] -- .pull-right[ ```r log(x) ``` ``` ## [1] 0.0000000 0.6931472 1.0986123 ``` ```r y / z ``` ``` ## [1] 0.5 0.4 ``` ] -- <br/> ```r x %% y ``` ``` ## Warning in x%%y: longer object length is not a multiple of shorter object length ``` ``` ## [1] 1 2 3 ``` --- ## Comparison operators Operator | Comparison | Vectorized? :----------:|:--------------------------:|:----------------: `x < y` | less than | Yes `x > y` | greater than | Yes `x <= y` | less than or equal to | Yes `x >= y` | greater than or equal to | Yes `x != y` | not equal to | Yes `x == y` | equal to | Yes `x %in% y` | contains | Yes (over `x`) .footnote[over `x` here means the returned value will have the same length as `x`] --- ## Comparisons ```r x = c("A","B","C") z = c("A") ``` .pull-left[ ```r x == z ``` ``` ## [1] TRUE FALSE FALSE ``` ```r x != z ``` ``` ## [1] FALSE TRUE TRUE ``` ```r x > z ``` ``` ## [1] FALSE TRUE TRUE ``` ] -- .pull-right[ ```r x %in% z ``` ``` ## [1] TRUE FALSE FALSE ``` ```r z %in% x ``` ``` ## [1] TRUE ``` ] --- ## Conditional Control Flow Conditional execution of code blocks is achieved via `if` statements. ```r x = c(1, 3) ``` -- ```r if (3 %in% x) print("Contains 3!") ``` ``` ## [1] "Contains 3!" ``` -- ```r if (1 %in% x) print("Contains 1!") ``` ``` ## [1] "Contains 1!" ``` -- ```r if (5 %in% x) print("Contains 5!") ``` -- ```r if (5 %in% x) { print("Contains 5!") } else { print("Does not contain 5!") } ``` ``` ## [1] "Does not contain 5!" ``` --- ## `if` is not vectorized ```r x = c(1, 3) ``` -- ```r if (x == 1) print("x is 1!") ``` ``` ## Warning in if (x == 1) print("x is 1!"): the condition has length > 1 and only ## the first element will be used ``` ``` ## [1] "x is 1!" ``` -- <br/> ```r if (x == 3) print("x is 3!") ``` ``` ## Warning in if (x == 3) print("x is 3!"): the condition has length > 1 and only ## the first element will be used ``` --- ## Collapsing logical vectors There are a couple of helper functions for collapsing a logical vector down to a single value: `any`, `all` ```r x = c(3,4,1) ``` .top-pad[] .pull-left[ ```r x >= 2 ``` ``` ## [1] TRUE TRUE FALSE ``` ```r any(x >= 2) ``` ``` ## [1] TRUE ``` ```r all(x >= 2) ``` ``` ## [1] FALSE ``` ] .pull-right[ ```r x <= 4 ``` ``` ## [1] TRUE TRUE TRUE ``` ```r any(x <= 4) ``` ``` ## [1] TRUE ``` ```r all(x <= 4) ``` ``` ## [1] TRUE ``` ] <div/> -- <br/> ```r if (any(x == 3)) print("x contains 3!") ``` ``` ## [1] "x contains 3!" ``` --- ## `else if` and `else` .pull-left[ ```r x = 3 if (x < 0) { "x is negative" } else if (x > 0) { "x is positive" } else { "x is zero" } ``` ``` ## [1] "x is positive" ``` ] .pull-right[ ```r x = 0 if (x < 0) { "x is negative" } else if (x > 0) { "x is positive" } else { "x is zero" } ``` ``` ## [1] "x is zero" ``` ] --- ## `if` and `return` R's `if` conditional statements return a value (invisibly), the two following implementations are equivalent. .pull-left[ ```r x = 5 ``` ```r s = if (x %% 2 == 0) { x / 2 } else { 3*x + 1 } ``` ```r s ``` ``` ## [1] 16 ``` ] .pull-right[ ```r x = 5 ``` ```r if (x %% 2 == 0) { s = x / 2 } else { s = 3*x + 1 } ``` ```r s ``` ``` ## [1] 16 ``` ] .footnote[ Notice that conditional expressions are evaluated in the parent scope. ] --- ## Exercise 2 Take a look at the following code, without running it in R, ```r f = function(x) { # Check small prime if (x > 10 || x < -10) { stop("Input too big") } else if (x %in% c(2, 3, 5, 7)) { cat("Input is prime!\n") } else if (x %% 2 == 0) { cat("Input is even!\n") } else if (x %% 2 == 1) { cat("Input is odd!\n") } } ``` what do you expect the outcome will be for each of the following ```r f(1) f(3) f(8) f(-1) f(-3) f(1:2) f("0") f("3") f("zero") ``` .footnote[More on functions next time] --- class: middle # Error Checking --- ## `stop` and `stopifnot` Often we want to validate user input or function arguments - if our assumptions are not met then we often want to report the error and stop execution. ```r ok = FALSE ``` ```r if (!ok) stop("Things are not ok.") ``` ``` ## Error in eval(expr, envir, enclos): Things are not ok. ``` ```r stopifnot(ok) ``` ``` ## Error: ok is not TRUE ``` .footnote[*Note* - an error (like the one generated by `stop`) will prevent an RMarkdown document from compiling unless `error = TRUE` is set for that code chunk] --- ## Style choices .pull-left[ Do stuff: ```r if (condition_one) { ## ## Do stuff ## } else if (condition_two) { ## ## Do other stuff ## } else if (condition_error) { stop("Condition error occured") } ``` ] .pull-right[ Do stuff (better): ```r # Do stuff better if (condition_error) { stop("Condition error occured") } if (condition_one) { ## ## Do stuff ## } else if (condition_two) { ## ## Do other stuff ## } ``` ] --- ## Exercise 3 Write a set of conditional(s) that satisfies the following requirements, * If `x` is greater than 3 and `y` is less than or equal to 3 then print "Hello world!" * Otherwise if `x` is greater than 3 print "!dlrow olleH" * If `x` is less than or equal to 3 then print "Something else ..." * Stop execution if x is odd and y is even and report an error, don't print any of the text strings above. Test out your code by trying various values of `x` and `y`.